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Registration is a way to find meaningful correspondences between points in 
one image to points in another image or a group of images. It attempts to 
align images, such that common structures match. In conventional pairwise 
intensity-based registration, we usually attempt to find the optimum of 
registration objective function. We investigated whether there is structural 
information present in the shape of the optimum. Such structures might be 
used to improve the performance of registration. By using simple structures 
(i.e., an edge or corner structure) and Mutual Information (MI) objective 
function, we perturbed one image locally with a diffeomorphism, and found 
interesting structure in the shape of the quality of fit function. 
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1. Introduction 

*Registration can be defined as the process of 
overlaying two or more images of the same scene 
taken at different time, from different viewpoints, 
and/or by different sensors (see the survey papers 
(Sotiras et al., 2013; Zitová and Flusser, 2003). Image 
registration is required for automatic model building 
(Cootes et al., 2004), to find correspondences in 
groups of images (Cootes et al., 2010), to combine 
and compare information from multiple multimodal 
images (fusion) (Haber and Modersitzki, 2006). 
Some attempts were made to add structural 
information into registration schemes to improve 
their performance (Konukoglu et al., 2011; Pluim et 
al., 2000; Purwani and Twining, 2014). 

In conventional pairwise intensity-based 
registration we usually attempt to find the optimum 
of registration objective function. We investigated 
whether there is explicit structural information 
present in the shape of the registration objective 
function about the optimum. Such structures might 
be used to improve the performance of registration.  

To investigate the shape of the optimum, we used 
a simple registered pairs of images with a single 
well-defined structure (i.e., a step (The images were 
generated by using Gaussian distributions)), and a 
way of perturbing this registration. By using mutual 
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information registration objective function (Viola, 
1995), we found the structure as two peaks and two 
troughs. Furthermore, on a corner structure (Fig. 6) 
we found it as four main peaks and four main 
troughs. We start the following sections with the 
calculation of mutual information objective function.  

2. Calculation of mutual information 

We start from the Shannon entropy (Shannon, 
1948) defined as, 

 
E = - Σ Pᵢ log Pᵢ                                                                                (1) 

 
where Pᵢ the probability of bin i of the histogram. We 
consider the registration of two images, I₁ and 
warped image Ĩ₂. The mutual information is defined 
as 

 
L(I₁, Ĩ ₂) = E(I₁) + E(Ĩ ₂) - E(I₁, Ĩ₂)                                              (2) 

 
where E is the Shannon entropy (1), computed from 
the probability distribution of individual image I₁ 
and Ĩ₂, and E(I₁, Ĩ₂) is the joint entropy computed 
from the joint probability distribution (2D 
histogram).  

Mutual information is an information theory 
measure used in multimodal registration, and which 
considers image values and difference in the context 
of the image as the whole. Mutual information was 
used in these experiments, as a more challenging 
implementation than a simpler objective function, 
such as sum of squared differences. Although some 
early papers (Viola, 1995; Viola and Wells III, 1997) 

http://www.science-gate.com/
http://www.science-gate.com/IJAAS.html
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:sri.purwani@unpad.ac.id
https://doi.org/10.21833/ijaas.2018.02.025
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://crossmark.crossref.org/dialog/?doi=10.21833/ijaas.2018.02.025&amp;domain=pdf&amp


Purwani et al/ International Journal of Advanced and Applied Sciences, 5(2) 2018, Pages: 171-175 

172 
 

used the 'Parzen Window' method for density 
estimation to compute MI, a review paper by Pluim 
et al. (2003) noted that the majority of the papers 
used histogram for computing MI (Studholme et al., 
1995; Collignon et al., 1995; Studholme et al., 1999; 
Sabuncu and Ramadge, 2008; Twining and Taylor, 
2011). Therefore, we calculated the entropy, and 
hence the MI by using histogram. Then, how we set-
up perturbation for a pair of registered images is 
given in the next section. 

3. Perturbation set-up 

In order to probe the shape of the optimum, we 
set up displacement from the optimum for a pair of 
registered images†. We applied a simple warp-
within-a-circle‡ to one of the images. This 
continuous, smooth and invertible warp (called 
diffeomorphism) ensures that every point in one 
image maps to exactly one point in other image, and 
vice versa, or there are no tears and folds. This warp 
was used to perturb the results of the registrations 
locally (i.e. locally non-rigid). We performed some 
experiments on the simplest case, with fixed circle 
size, and center of the circle lying on the step edge 
(see the left image in Fig. 1). The experiments 
included: 

 
 Fix the direction of the maximum displacement, but 

vary the size. 
 Fix the size of the maximum displacement, but vary 

the direction. 
 For each case, what is the effect of varying the noise 

in the images? 
 

We generated a pair of unperturbed, registered 
images once (see the top images in Figs 3 and 4), and 
applied different sizes of perturbation on one of the 
images on each run by using random number. First 
we plotted the MI against the mean displacements 
across all pixels within the circle. Then by varying 
the direction we plotted it against the angle. Plots 
are for the same pair of noisy images, but different 
sizes of perturbation. These plots are given after the 
analysis and predictions section. 

4. Analysis and predictions  

For movement perpendicular to the step-edge, 
we show the effect of small displacement using pull-
back warping (see the left image in Fig. 1). 

For small displacement less than one pixel, the 
only pixels which can change value are those like B, 
in the first row next to the step. For slightly larger 
displacement, less than two pixels, pixels like A from 
the second row will start to alter their colour, as they 
move onto the ramp part of the interpolation 
function (see the right graph in Fig. 1). 

                                                 
† A pair of step images or a pair of corner-structure images (see 

the top images in Figs 3, 4 and 6). 
‡ A warp based on the movement of the center, and which moves 
only the space within the unit circle (Cootes et al., 2004].) 

 
Fig. 1: Noise-free step image: Pull-back warping 

 

Based on these facts, we can then predict the 
effect on the scatter plot and the mutual information 
(Fig. 2). 

 

 
Fig. 2: Mutual information for noise-free case 

 

The pixels from the first row (shown in green on 
the left in Fig. 2) now change their values in image 2. 
The brightest pixel is the one closest to the center of 
the circle, which has a larger displacement than any 
other pixels in the first row.  

When there is at most one non-empty bin in each 
row (see the right image in Fig. 2), then the entropy 
of image 2 cancels with the joint entropy, leaving just 
the entropy of image 1 (image 1 not being warped). 
This gives the list of predictions for MI in the noise-
free case, as follows, 

 

 For displacements less than one pixel, the MI will 
be flat. 

 The graph of MI will have abrupt changes at 
displacement values = 1, 2, 3, etc. 
 

It can be shown that the mean displacement is a 
third of the maximum displacement. Hence, in terms 
of the mean displacement the MI plot will have the 
flat parts at the predicted values less than 0.333, and 
have the abrupt changes at the predicted values = 
0.333, 0.667, 1, etc. 

As noise increases, the smoothing effect (which 
increases MI (Ashburner and Friston, 2007; Tsao, 
2003) will occur at small displacements, hence a 
central trough rather than flat. This will depend on 
the amount of noise, and affect all pixels in the circle. 
At larger displacements, we will see the step mis-
registration signal, hence MI will decrease. The 
results in the following section agree with these 
predictions. 

5. Results and discussions 

The plot of MI against the mean displacement for 
displacement perpendicular to the step-edge of low-
noise case is shown on the bottom in Fig. 3.  
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Fig. 3: The images with low-noise w₁ = w₂ = 0.01 in [0-1] 

scale (Top), and the MI plot against the mean displacement 
(Bottom) 

 
According to the previous predictions, the MI will 

be flat at the values less than 0.333, and have abrupt 
changes at the values = 0.333, 0.667, 1, etc. These are 
shown on the bottom in Fig. 3. The red lines show 
the predicted displacements at which successive 
rows of pixels begin to cross the step edge, leading to 
an abrupt drop in the MI.  

As noise increases (see the top images in Fig. 4), 
the smoothing effect, which increases MI, will occur 
at small displacements, hence a central trough rather 
than a flat plateau (see the bottom graph in Fig. 4). 
The smoothing effects of the interpolation make the 
distribution of image values become narrower and 
peakier, and this tends to increase the mutual 

information (Ashburner and Friston, 2007, Tsao, 
2003).  

This also shows the step mis-registration signal 
at larger values of the displacement, where the edge 
placed in the wrong place starts to decrease the MI 
(see the bottom graph in Fig. 4). 

 

Fig. 4: The images and the plot of MI in the noisy case 
 
We then fixed the size of maximum displacement 

rad, but varied the directions (see the MI plots in Fig. 
5). The MI plotted against the angle (red) has one 
abrupt change, whereas that with the same image 
noise but different size of maximum displacement on 
the bottom left (blue), has four abrupt changes. This 
is clearly shown when we replot both graphs against 
the perpendicular maximum displacement where 
both graphs fit together (see the right graph in Fig. 
5).  

 

 
Fig. 5: Left: Two MI graphs with the same noise value w = 0.01 but different maximum displacement rad; Right: MI plotted 
against the perpendicular maximum displacement for the same data (this shows that the first graph fits on the top of the 

second graph) 

 
Looking at these plots as a whole, we find that the 

structural information signal in the shape of the 
mutual information about the global optimum is the 
pattern of two troughs and two peaks as shown on 

the left graphs in Fig. 5 which are plotted against the 
angle. We then applied this case to the corner 
structure (Fig. 6). 
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We fixed the size of the maximum displacement 
but varied the direction of displacements, and we 
also applied perturbation right on the corner. The MI 
plotted against the angle has many smaller peaks 
and troughs (see the bottom graph in Fig. 6). By 

smoothing it we can see four main peaks and four 
main troughs at the predicted values. The predicted 
maxima and minima along with the MI plot are 
shown in Fig. 7. 

 

 
Fig. 6: Shown on the top unwarped (left) and warped (right) random images of noise-free case with rad = -3.6088 (The 

displacement of the corner is visible, but still a small change overall; shown on the bottom the MI plot) 
 

 
Fig. 7: The top shows plot of MI for noise-free case of a corner with 4 main peaks and 4 main troughs (The bottom shows 

their predicted maxima and minima; these approximate predictions are pointed on the plot by the arrows) 
 

The top shows plot of MI with 4 main peaks and 4 
main troughs. The bottom left shows the predicted 

peaks, with green arrows showing pixels unchanged 
by the displacement, red means values change. 
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Taking into account the sense of the arrows (that is, 
whether they point from black to white or vice 
versa), we see the equivalences as shown. The 
bottom right shows the predicted troughs. The 
approximate predictions are shown on the plot by 
the arrows. We found similar case when we apply 
this procedure to the noise-case. The next section 
will conclude all the discussions. 

6. Conclusion 

Various issues occurred regarding the results of 
experiments, such as a flat plateau rather than a 
smooth, sharp peak near the optimum (Figs. 3 and 
5), or the many minor local maxima and minima that 
occurred along with the four main local maxima and 
minima (due to real image structures, Figs. 6 and 7). 
One possible cause is the use of histograms, and their 
binning process, when estimating entropy and hence 
mutual information. 

We find the structural information for the case of 
a corner as the four main peaks and the four main 
troughs in the plot of MI (see the bottom graph in 
Fig. 6); instead of two peaks and two troughs for the 
case of a straight edge (see the left graphs in Fig. 5). 
However, it is surprising and hence interesting, even 
in the noise-free case with many smaller peaks and 
troughs. This suggests that except in this very 
simplest case, it would not be possible to use this 
information to go the other way, and infer the 
structure from the shape of the optimum. And in 
these examples, we knew where the structure was 
located at the start. Instead, we will consider other 
methods of linking registration and segmentation. 
Recently we consider pairwise registration, but in 
reality we usually have a large number of images. 
Therefore, groupwise registration which 
incorporates structural information or segmentation 
in its scheme will become our future work. 
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